
DIC LAB 3 - CRIME PREDICTION & INSIGHT GENERATION

Malvika, and David Jegan
Department of Computer Science

University at Buffalo
{msundara,davidjeg}@buffalo.edu

Abstract— The primary focus of our project is to predict the
category of the crime based on the geo-spatial and temporal
dimensions of the event. Leveraging the publicly available San
Francisco city crime dataset we can derive insights and predict
the levels of democracy, hot-spots of violence and geographical
spread of disturbance etc. The dataset is humongous in terms
of GB, and spark helps to bring ML model to the data,
increasing the performance, and scalability.

I. PROBLEM STATEMENT

Crime rate is an ubiquitous problem in all metropolitan
cities and San Francisco (SFO) is no exception. In spite of
the scale of geographical extent of events, we can observe
that certain type of crimes are prevalent within certain spatial
locations. If we are able to predict the event type and form
relationship between the individual events, we can gain great
insights from the data. The overall dataset is huge and
contains around 2.3 Million entries, thus Apache Spark is
a powerful tool with many useful libraries (like MLlib and
GraphX) and it would be a best fit solution for running
an ML model on data of this size. The highly connected
data can be constructed into a graph, to help us proactively
prevent crime rather than being reactive after the incident
has occurred.

II. DATA SOURCE

The crime data source is downloaded from the San Fran-
cisco government data (https://data.sfgov.org/Public-Safety/)
which is publicly available on the internet. It is an aggregated
collection of crime and miscreant information garnered by
the SFO Police department released and updated periodically.
This public crime data does not include any sort of informa-
tion about persons related to crimes, not even as anonymity
tokens - it supplies only crime and location data. We tried
loading the data in Jupyter Notebook but it took around 5
minutes to just load the data, whereas in Spark cause of lazy
evaluation, in-memory computation and parallel processing,
loading data was much quicker ie. less than a minute.

A. Size
There are around 2.3 million records and the overall size

is around 620MB.

B. Duration
The data is available from March 2013 to current day

(Month of April 2019). The data is updated in a weekly
fashion.

C. REST API call
The upcoming new events can be extracted using the API,

the SFO government has provided. It can be downloaded in
csv or json format. [4] They have deployed their API under
Socrate Open Data (SODA) and we can use it for filtering,
querying and aggregating data.

III. SOLUTION ARCHITECTURE

Fig. 1. Overview

A. Environment, Tools and Technologies
1) Data collection Jupyter Notebook with Python runtime
2) Graph interpreter Neo4J is chosen as the base

database as the data is rich and connected
3) Spark PySpark is used as the runtime environment.

PySparkSQL is used for data manipulation.
4) Machine Learning Spark MLLib is used for imple-

menting Random forest, Naive Bayes classifier and
Logistic Regression

5) Graphx Triangle Count and Betweenness Centrality
algorithms are implemented using Spark Graphx.The
scala API is used here. Betweeness Centrality is im-
plemented using the spark-betweenness package.

6) Visualization Google Cloud Datastudio and Neo4J
Graph visualization is used here



Fig. 2. Detailed Overall Flow

B. Data Collection
We have written a subroutine to automatically access the

data source in a programmatic manner using API call. The
figure 4 below demonstrates how to extract data using their
API.

1) Data Model: We consider the following event model
as our datasource is rich in interconnection as shown in
the figure 3, where events is the entity to be predicted and
objects, locations are the features which would be connected.
As shown in the figure, the data is interconnected.

Fig. 3. Data Interconnection Sample

C. Graph Interpretation
The dataset here is humongous and utilizing spark’s in-

herent ideology of moving code to data helps in improving
the overall performance of the system. This data structure
is more inclined for a graph DB as it is represents a graph.
Therefore, we store the data to Neo4J Graph database and
leveraging the Neo4J Spark connector we can load the data
from neo4J DB directly into spark and store the results back
into Neo4J as graphs, as shown in figure 5, 6 and 7 below.

Fig. 4. Data Access - Example

Fig. 5. Neo4J connector to Spark

Fig. 6. Crime type and locations

D. Spark
Spark is chosen, as it has a lot of advantages over con-

ventional coding, like the inherent advanced DAG execution
framework engine where all the transformations to an RDD
are stored as DAG and when an action is encountered the
DAG is traversed and all the steps are executed(this is how
lazy evaluation is done in spark) and in-memory computing.
Thus it is 10x faster on disk and has compatibility with
advanced high-level languages like Java, Python, Scala etc.



Fig. 7. Important crime locations

Fig. 8. Spark Stack

In addition to that Spark has around 80 high level operators
to assist building parallel applications.

Spark also has stack of library like GraphX and MLlib for
bringing the power of graphs and machine learning in our
application.

E. Machine Learning
The whole ML pipeline is automated to run sequentially

using programming. We form tokenized words from the
sentences in every articles. We later remove the stop words.
Following this TF and IDF for all the articles. The train set

is from Mar 2013 to May 2018 and the test set is from May
2018 to current date.

1) Models: There are three models built for this demon-
stration, namely Random Forest Classification, Naive Bayes
and Logistic regression.

Fig. 9. Feature Extraction sample

2) Feature Extraction: We have multitudes of words
after filtering stop words and tokenization. We consider the
most important words by generating the Term frequency
for the words. We convert words into fixed length feature
vectors called Hashing Term Frequency, where hashing is
done for TF calculation. Then we do Inverse Document
Frequency (IDF), where each column created by Hashing
Term frequency.

3) Train Test: For the data we split train and test for the
three models in ratio of 75 is to 25 percent. The models are
trained for the three models and tested upon unknown data
set. The label predicted is compared with the actual labels to
predict accuracy of the system for the multi-class classifier
models.

4) Pipeline: Figure 9 shows the steps of regexTokeniza-
tion, stopword/special character filtering and Term frequency
count for the model.

1) regexTokenizer: Tokenization using reg expressions
2) stopwordsRemover: Remove stopword/spl characters
3) countVectors: Count vectors TF and IDF
4) stringIndexer: Encodes label in strings to indices

F. Graph Algorithms

Fig. 10. Triangle Count

1) Triangle Count: A triangle is formed when a node
has two adjacent nodes that are connected, ie. an edge exists



between the two adjacent nodes. Spark GraphX implements
triangle counting algorithm by determining the number of
triangle passing through each node. Thus this method is
a kind of clustering of connected nodes. We can analyze
incidents of such triangles to identify criminal gangs or
suspect groups. From figure 10, we observe that the most
prominent nodes in the overall graph are those pink nodes.
Those 6 pink nodes are linked to almost 25 type of crimes
and all 6 pink nodes are interconnected. So the inference
might be that those 6 pink nodes can constitute a gang, and
are connected to a variety of crime.

Fig. 11. Betweenness Centrality

2) Betweenness Centrality: The most important nodes
in the graph can be identified using the betweenness al-
gorithm. This measures the centrality of the overall graph
by identifying the nodes that is located on the shortest path
between multiple nodes. We can therefore identify the most
important node, which sits on several clusters. In our use case
we can identify the prevalent crimes in a neighbourhood by
determining the shortest path between the crime nodes.From
figure 11, we observe that there exists a lot of nodes which
are connected to many other nodes in the graph.

IV. OUTCOME AND VISUALIZATION

A. Data Visualization EDA
We visualize the data to understand how reliable our data

is. Figure 12 provides an overview on the type of crime
incidents, wherein we can notice that the most commonly
committed crime is Theft. Also to show the spread of events
in terms of duration, we plot the dates at which the event
has occurred. From the figure 14, it is evident that most of
the incidents has occurred in August and July. Figure 15
provides an more specific crime type and here we observe
that rather than theft, assault is the most prevalent issue.

Fig. 12. Type of crime

Fig. 13. Geolocation of crime

Fig. 14. Monthly Spread of crimes

Fig. 15. Specificity of crime



B. ML model results
We ran our ML model locally, and have hosted it on

Google colab to generate a sharable link mentioned in
Reference 1.
https://colab.research.google.com/

drive/1iLLXpdV43WkljTAqvQ32-hKedj6jb4ME
Figure 16 shows the count of incidents as a demonstration

of how diverse and huge our dataset is. Also figure 17,
shows Logistic regression model and its prediction and actual
labels. Figure 18, shows the results of our model, which is
99 percent accurate.

Fig. 16. Category of incidents

Fig. 17. ML result - prediction vs actual

Fig. 18. Results of ML model prediction

C. Graph models script
There is no latest Python API for Graphx,so scala API is

used for the implementation of the algorithms. From figure
19 and 20, we find the code snippet for the Graph algorithms
of Triangle count and betweenness centrality respectively.

In the spark Graphx triangle count algorithm, the Triangle
Count object calculates the number of triangles that passes
through each vertex in the graph which provides a measure
of the clustering of the data. Here a vertex belongs in a
triangle if it has two adjacent vertices with an edge that
goes between them. In order to run triangle count,the data
should should have edges in canonical orientation and the
graph partitioned using Graph.partitionBy. Spark doesn’t
provide inbuilt algorithm for betweenness centrality,we use
the package spark-betweeness for k Betweenness Centrality
(kBC) algorithm for Spark using Graphx. The code snippet
shows the usage of the algorithm from loading data and
calling the respective function.

Fig. 19. Triangle Count algorithm

Fig. 20. Betweenness centrality algorithm

V. SUMMARY

A. Summary - Learning outcome
The following points surmise our overall learning outcome

in this project.
1) The importance of size and diversity in data. Data is

of prime importance, as the overall system depends on
it.

2) Building an automated data retrieval system which can
access the recent articles from the datasource

3) Neo4J database - introduction, how to construct graphs.
4) Cypher query language - Queries to be run on Neo4J

database.
5) Installation of spark - hurdles and the way we over-

came it
6) Feature extraction - Maximizing data as 6 columns

from 2 columns in addition to cross-fold validation
7) Importance of TF-IDF for word prominence detection
8) To run ML on spark for Naive, Logistic and Random

forest classifier models
9) Graph algorithms and their implementation in

Neo4J/Scala API.

https://colab.research.google.com/drive/1iLLXpdV43WkljTAqvQ32-hKedj6jb4ME
https://colab.research.google.com/drive/1iLLXpdV43WkljTAqvQ32-hKedj6jb4ME


10) Finding the EDA provided by SFData and tweaking it
to satisfy our requirement

B. Summary - Future work
1) Housing the data in S3
2) Connecting Neo4J to Spark directly
3) Involving more complex ML models (Apart from tree

models). Using ensemble (voting/bagging/boosting) in
the future

4) Finding more relationship in the data
5) Publishing Google Datastudio and build a standalone

application
6) Using real-time data from sources like Twitter, FB,

Google news, RSS, NYTimes etc (Reliability/subjec-
tivity is a concern)

REFERENCES

[1] Our ML Code https://colab.research.google.com/drive/1iLLXpdV43WkljTAqvQ32-
hKedj6jb4ME.

[2] Spark Intro https://runawayhorse001.github.io/LearningApacheSpark/why.html.
[3] Spark installation https://medium.com/@dvainrub/how-to-install-

apache-spark-2-x-in-your-pc-e2047246ffc3.
[4] API For SF data https://dev.socrata.com/foundry/data.sfgov.org/wg3w-

h783
[5] SF Data - Train set https://data.sfgov.org/Public-Safety/Police-

Department-Incident-Reports-Historical-2003/tmnf-yvry/data
[6] SF Data - Test set https://data.sfgov.org/Public-Safety/Police-

Department-Incident-Reports-2018-to-Present/wg3w-h783
[7] SF Data - visualization https://data.sfgov.org/d/wg3w-

h783/visualization
[8] Coursera - learning basics https://www.coursera.org/learn/big-data-

graph-analytics/lecture/JFZJf/hands-on-getting-started-with-neo4j
[9] Graphx intro https://spark.apache.org/docs/latest/graphx-programming-

guide.html
[10] Neo4j-Spark intro https://medium.com/data-science-school/practical-

apache-spark-in-10-minutes-part-7-graphx-and-neo4j-b6b01cffa4fd
[11] Pyspark classification intro https://towardsdatascience.com/multi-

class-text-classification-with-pyspark-7d78d022ed35
[12] https://runawayhorse001.github.io/LearningApacheSpark/classification.html


	Problem Statement
	Data Source
	Size
	Duration
	REST API call

	Solution Architecture
	Environment, Tools and Technologies
	Data Collection
	Data Model

	Graph Interpretation
	Spark
	Machine Learning
	Models
	Feature Extraction
	Train Test
	Pipeline

	Graph Algorithms
	Triangle Count
	Betweenness Centrality


	Outcome and Visualization
	Data Visualization EDA
	ML model results
	Graph models script

	Summary
	Summary - Learning outcome
	Summary - Future work

	References

