
davidjeg 50290785
msundara 50290572 DIC Project 2

CSE 587
April 22, 2019

Analysis of SPORTS for word count and co-occurrence

Introduction

The topic of choice is SPORTS and there are 5 different subtopics selected for this
lab, namely [Cricket, Football, Basketball, Hockey and Tennis] This topic has always
been mentioned in the US all the time and would generate huge volumes of data under
each category.

Flow

Figure 1: Flow chart

We generate articles from NYTimes, Twitter and Common crawl respectively from Jan
2019 for two categories, long duration and short duration. We then use MR and NTLK
packages to clean the articles and find the most occurring word and co-occurring pairs.
Later D3js is used to visualize the results.

1

davidjeg 50290785
msundara 50290572 DIC Project 2

CSE 587
April 22, 2019

1. NYTimes Data Extraction

Algorithm 1: NY Search - API access

from nytimesarticle import articleAPI
for i in range(30):
api = articleAPI(apikey)
response = api.search(q = query, begin date = int(today), page = i)
for j in range(len(response[’response’][’docs’])):

urls.append(response[’response’][’docs’][j][’web url’])

From nytimesarticle we provide API key to extract news article for query and current
date. We then parse json and add urls to list. The we use beautiful soup to extrcat the
text and save it into a file locally.

Algorithm 2: HTML Parser

for i in urls:
response = requests.get(i)
soup = BeautifulSoup(response.content, ’html.parser’)
soup.prettify()
for sentences in soup.find all(’p’):

subset sentences = subset sentences + (sentences.string)
subset sentences list.append(subset sentences)

2. Twitter Data Extraction

Algorithm 3: Twitter - API access

auth = tweepy.OAuthHandler(consumer key, consumer secret)
auth.set access token(access token, access token secret)
tweet api = tweepy.API(auth, wait on rate limit=True)

for t in tweepy.Cursor(api.search,q=query+’−filter:retweets’,lang=’en’).items(10):
if(t.retweeted == False):

tweets.append(t.text.encode(’utf−8’))

From tweepy we provide API key to extract tweets for query. We then parse tweepy
object and add tweets to list. Then we extract the tweets and save it into a file locally.

3. Common crawl Data Extraction

Algorithm 4: Common crawl - API access

index = ’2019−13’
cc url = ”http://index.commoncrawl.org/CC−MAIN−%s−index?” % index
cc url += ”url=%s&matchType=domain&output=json” % domain
response = requests.get(cc url)
if response.status code == 200:

records = response.content.splitlines()
for record in records:

record list.append(json.loads(record))

2

davidjeg 50290785
msundara 50290572 DIC Project 2

CSE 587
April 22, 2019

We use the March month common crawler index for extracting query relevant terms.
We use REST API call to request from the url. Then parsing the json we access the
S3 common crawl for url using offset and index. The file is unzipped and responses are
appended in the file locally. This script is heavily inspired from the website
https://www.bellingcat.com/resources/2015/08/13/using-python-to-mine-common-crawl/
and uses Python 2.7 environment.

Algorithm 5: Common crawl - Offset and length download

offset, length = str(record[’offset’]), str(record[’length’])
offset end = int(offset) + int(length) − 1
prefix = ’https://commoncrawl.s3.amazonaws.com/’
resp = requests.get(prefix + str(record[’filename’]),

headers={’Range’: ’bytes={}−{}’.format(offset, offset end)})
raw data = StringIO.StringIO(resp.content)
f = gzip.GzipFile(fileobj=raw data)
data = f.read()
warc, header, response = data.strip().split(’\r\n\r\n’, 2)
#return response

Figure 2: Command in cmd

4. Search indexes

Index Key words

sports [sports,games,league match, Olympic, athlete]
cricket [cricket, icc, cricket world cup, IPL, dhoni, virat kohli,]
football [football, soccer, FIFA manchester united, liverpoolfc, fcb, real madrid]

basketball [basketball, lebronjames, NBA, NCAA]
hockey [hockey, NHL, icehockey]
tennis [tennis, miamiopen, usopen, atpworldtour, federer, nadal]

5. Mapreduce

3

davidjeg 50290785
msundara 50290572 DIC Project 2

CSE 587
April 22, 2019

(a) Word count Mapper Mapper outputs the key,value pair for each word in the
articles provided. The value is 1 and the key is the individual words.

(b) Word count Reducer Reducer processes the output of the mapper aggregating
the key,value pair of each word. The reducer finally emits the sum as output.

(c) Word cooccurance Mapper Similar to word count, we select the pairs of words
in the neighbourhood of 1 and determine the key,value. Here value remains 1
and key is the input word. We have done both pairs and stripes approach. Pairs
approach runs quicker because there is no object serialization/deserialization for
long data.

(d) Word cooccurance Reducer Similar to word count, we aggregate the wordpair,
value for emitting as results.

The environment setup

• Cloudera Quickstart VM is used for running the Map reduce jobs

• It comes pre installed with Hadoop,Spark,Oozie and so on and requires a 8GB
RAM machine for running in a VirtualBox

• In order to run the Cloudera Manager 10GB RAM allocation must be required

Figure 3: Cloudera VM screenshot

4

davidjeg 50290785
msundara 50290572 DIC Project 2

CSE 587
April 22, 2019

Data upload to Cluster

• The data collected from sources like Twitter,New York Times,Common Crawl is
first loaded into the VM

• Data is separated as longData and shortData with subfolders for the three data
sources inside

• Both the above mentioned folders is moved to HDFS through the command,it
could be either hadoop fs or hdfs dfs
hdfs dfs -copyFromLocal <localpath> <hdfspath/destionation>

Running MR Job for Word Count

The below is the instructions to run the MR job

Algorithm 6: Shell script for running Map Reduce Jobs in Cloudera VM

#!/bin/bash

#Filename mr.sh

echo Filename :"$1"

echo inputDirectory :"$2"

echo outputDirectory: "$3"

for i in {0..5}

do

echo "Running $i times"

#HDFS Outpath

outputpath="$3file$i"

#Name of the Input File to read

filename="$1_$i.txt"

#checks to see if the output directory exists

hdfs dfs -test -d "$outputpath"

if [$? == 0]; then

hdfs dfs -rm -r "$outputpath"

else

echo "Output file doesn’t exist and will be created when MR job

↪→ runs"

fi

#Command to run the Map Reduce python program

/usr/lib/hadoop/bin/hadoop jar /usr/lib/hadoop-0.20-mapreduce/

↪→ contrib/streaming/hadoop-streaming-2.6.0-mr1-cdh5.13.0.jar -

↪→ file /home/cloudera/Desktop/mapper.py -mapper "python mapper.

5

davidjeg 50290785
msundara 50290572 DIC Project 2

CSE 587
April 22, 2019

↪→ py" -file /home/cloudera/Desktop/reducer.py -reducer "python

↪→ reducer.py" -input /user/cloudera/"$2"/"$filename" -output /

↪→ user/cloudera/"$outputpath"

done

#After the successfull run of all the files for a particular topic,the

↪→ folders are copied from HDFS

hdfs dfs -copyToLocal "$3" /home/cloudera/Desktop/WordCount

• The above shell script can be used to run map reduce task a source which has six
subtopics or files

• The script takes three input arguments filename,hdfs input path and hdfs output
path

• Then results for the six files are copied from HDFS directory to the local VM path

• The below commands can be used to run for longData for the three different
sources

Algorithm 7: Shell script for running Map Reduce Jobs for three different sources

chmod +x mr.sh

./mr.sh tw_news longData/twitterData longOutput/tw/

./mr.sh ny_times_news longData/newsData longOutput/news/

./mr.sh cc_news longData/crawlData longOutput/crawl/

The below program shows the screenshot of execution of the above command for Twitter
Data

6

davidjeg 50290785
msundara 50290572 DIC Project 2

CSE 587
April 22, 2019

Figure 4: Screenshot of the execution of MR Job

6. Visualization

The left is the word count for small data, center is the word count for large data and
the right is for word cooccurance.

Figure 5: NYTimes Sport

7

davidjeg 50290785
msundara 50290572 DIC Project 2

CSE 587
April 22, 2019

Figure 6: NYTimes Cricket

Figure 7: NYTimes Football

Figure 8: NYTimes Basketball

Figure 9: NYTimes Hockey

8

davidjeg 50290785
msundara 50290572 DIC Project 2

CSE 587
April 22, 2019

Figure 10: NYTimes Tennis

Figure 11: Twitter Sport

Figure 12: Twitter Cricket

Figure 13: Twitter Football

9

davidjeg 50290785
msundara 50290572 DIC Project 2

CSE 587
April 22, 2019

Figure 14: Twitter Basketball

Figure 15: Twitter Hockey

Figure 16: Twitter Tennis

Figure 17: CommonCrawl Sport

10

davidjeg 50290785
msundara 50290572 DIC Project 2

CSE 587
April 22, 2019

Figure 18: CommonCrawl Cricket

Figure 19: CommonCrawl Football

Figure 20: CommonCrawl Basketball

Figure 21: CommonCrawl Hockey
...

11

davidjeg 50290785
msundara 50290572 DIC Project 2

CSE 587
April 22, 2019

Figure 22: CommonCrawl Tennis

Results

We observe that Twitter in all topics and subsections, gave relatively poor output compared
with NYTimes and Common crawl. Topics had the most accurate results, because of the
amount of data, and diversification of data on the whole. As subsections are more specific
we observe that the word clouds are specific to the subtopic. Also, common crawl requires
extensive cleaning as many results were irrevelant.

Appendix

We have generated the Optional LDA and have tabluated the results for each of the topic in
large and small data.

Figure 23: LDA data

Directory structure based on this image.

12

davidjeg 50290785
msundara 50290572 DIC Project 2

CSE 587
April 22, 2019

Figure 24: Directorystrucutre

13

