
CSE 590

Computer Architecture

Homework/Assignment No:- 1

DESIGN OF 8-BIT NON-PIPELINED PROCESSOR

Author 1 :
Karthikeyan RS
50289080

Author 2:
David Jegan
50290785

Instructor:
Dr.Sridhar

April 16, 2019



Acknowledgement

This project is heavily inspired from the Aardvark tutorial and 16 bit single
cycle mips processor tutorial in FPGA4Student site. We were able to under-
stand their functionality and tried to replicate the standard outputs.
The basys was inspired from https://www.youtube.com/watch?v=6 GxkslqbcU
link of Digilentic.

1. https://github.com/brendabrandy/aardvark-8-bit-computer

2. https://www.fpga4student.com/2017/01/verilog-code-for-single-cycle-MIPS-
processor.html

3. https://www.youtube.com/watch?v=6 GxkslqbcU

4. https://github.com/Digilent/digilent-xdc/blob/master/Basys-3-Master.xdc

1



1 Block diagram - Overall

2



2 Block diagrams - individual components

3



4



5



6



3 Simulation results

7



4 Working of each component

Inst Register

1. Input: Instruction input

2. Output:

(a) J immediate: jump for i type instructin - contains address to jump
to

(b) Instruction to control unit - contains function for trigger in CU

(c) rt, rs - For R type instructions, regards to the registers

(d) i immediate- for address in immediate slot

3. Functionality: Decode instruction provided by Instruction memory. It
finds the R, J or I inst type and gets opcode from it.

Inst Memory

1. Input: From PC. The size is 256*8 bits

2. Output: To Ins register

3. Functionality: Stores 256 instructions as 1 byte sequence. Input of this
will be PCs output and would go for instruction decoder.

Program Counter

1. Input: clock, recursive pc + 1, reset

2. Output: PC sequence to Inst memory

3. Functionality: Fetch every PC sequence

Control Unit

1. Input: opcode, function

2. Output:

(a) MemtoReg: Flag if Register input data provided from ALU

8



(b) RegWrite: Flag if the instruction will update the value of the
register.

(c) MemWrite: Flag if present operation is going to write into mem-
ory.

(d) MemRead: Flag if present operation is going to read from memory.

(e) jctrl: Flag if jump is needed

(f) jrctrl: Flag if jump return is needed

(g) ALUSrc: Flag if an immediate or register data is to be provided
to the ALU.

(h) ALUop: Flag will perform according to the instruction the ALU.

(i) beqctrl: flag to be selected for a multiplexer to feed the pc.

(j) nextctrl: flag to be selected for next instruction to feed the pc.

3. Functionality: Generating the control signals according to the opcode
and function

Register file

1. Output:

(a) rt, rs data: return data

(b) s1, s2 data: internal registers

(c) sp, ra: stack pointer and return address

2. Input: regWrite, beqctrl, jrctrl, memctrl, ALUsrc, rt addr, rs addr,
dataToWrite, slt reg, rs write addr, clk

3. Functionality: The output of the register file will be the register’s data
according to the input operand.

ALU

1. Input: incoming operation sequence

2. Output: Output operation sequence

3. Functionality: The inputs will be register data and immediate value
depending upon the instruction type

9



ALU ctrl

1. Input: ALU ctrl bits - control bit from the ALU control unit

2. Output: result operation sequence

3. Functionality: The inputs will be register data and immediate value
depending upon the instruction type

Memory

1. Input: PC, memread, memwrite, dataMemWrite and input address

2. Output: readData sequence, ROM data

3. Functionality: We read instructions from ROM data and load it to the
memory. THen we fetch each instruction and pass it to the system

Sign extension 2 to 8

1. Input: Instr register 2 bits

2. Output: ALU/Mux sequence 8 bits

3. Functionality: The input is extended based on sign and sent to output

Sign extension 5 to 8

1. Input: Instr register 5 bits

2. Output: ALU sequence 8 bits

3. Functionality: The input is extended based on sign and sent to output

MUX 3 to 1

1. Input: Three 8 bit values and a control bit

2. Output: Input 1/2/3 based on ctrl flag

3. Functionality: The output is based on the input flag

MUX 2 to 1 - control 3 bits

1. Input: Two 8 bit values and three bit control

10



2. Output: Input 1/2 based on ctrl flag

3. Functionality: The output is based on the input flag

MUX 2in to 1 - control flag

1. Input: Two 2 bit values and one flag control

2. Output: Input 1/2 based on ctrl flag

3. Functionality: The output is based on the input flag

MUX 2 to 1 - control flag

1. Input: Two 8 bit values and one flag control

2. Output: Input 1/2 based on ctrl flag

3. Functionality: The output is based on the input flag

Basys 3

1. Input: Clock, btnC, btnU, btnDm btnR, btnL, sw[7:0]

2. Output: led[7:0],Seven Segment Display seg[6:0], an[3:0], dp

3. Functionality: Slide switch inputs (sw) is responsible for inputting from
the Basys board. Button are 3 in value and are used for inputing the
add and sub commands. dp is the display component

5 Steps

We first ran a C program named Assembler.c to convert the opcodes to
binary. Then we stored these binary files inside the memory as ROM. These
values is getting referenced by the PC and Instruction register to decode the
byte address at each level.

6 Work distribution

Understanding and running Vivado - David and Karthi
Simulation and Basys3 - Karthi and David
Writing .v scripts - David and Karthi

11



7 References

1. https://github.com/brendabrandy/aardvark-8-bit-computer

2. https://www.fpga4student.com/2017/01/verilog-code-for-single-cycle-MIPS-
processor.html

3. https://www.youtube.com/watch?v=6 GxkslqbcU

4. https://github.com/Digilent/digilent-xdc/blob/master/Basys-3-Master.xdc

12


	Block diagram - Overall
	Block diagrams - individual components
	Simulation results
	Working of each component
	Steps
	Work distribution
	References

